Direct Involvement of Ezrin/Radixin/Moesin (ERM)-binding Membrane Proteins in the Organization of Microvilli in Collaboration with Activated ERM Proteins

نویسندگان

  • Shigenobu Yonemura
  • Sachiko Tsukita
  • Shoichiro Tsukita
چکیده

Ezrin/radixin/moesin (ERM) proteins have been thought to play a central role in the organization of cortical actin-based cytoskeletons including microvillar formation through cross-linking actin filaments and integral membrane proteins such as CD43, CD44, and ICAM-2. To examine the functions of these ERM-binding membrane proteins (ERMBMPs) in cortical morphogenesis, we overexpressed ERMBMPs (the extracellular domain of E-cadherin fused with the transmembrane/cytoplasmic domain of CD43, CD44, or ICAM-2) in various cultured cells. In cultured fibroblasts such as L and CV-1 cells, their overexpression significantly induced microvillar elongation, recruiting ERM proteins and actin filaments. When the ERM-binding domains were truncated from these molecules, their ability to induce microvillar elongation became undetectable. In contrast, in cultured epithelial cells such as MTD-1A and A431 cells, the overexpression of ERMBMPs did not elongate microvilli. However, in the presence of EGF, overexpression of ERMBMPs induced remarkable microvillar elongation in A431 cells. These results indicated that ERMBMPs function as organizing centers for cortical morphogenesis by organizing microvilli in collaboration with activated ERM proteins. Furthermore, immunodetection with a phosphorylated ERM-specific antibody and site-directed mutagenesis suggested that ERM proteins phosphorylated at their COOH-terminal threonine residue represent activated ERM proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 organizes ERM proteins at the apical membrane of polarized epithelia.

Ezrin-radixin-moesin (ERM) proteins regulate the organization and function of specific cortical structures in polarized epithelial cells by connecting filamentous (F)-actin to plasma membrane proteins. The contribution of ERM proteins to these structures depends on a conformational change to an active state in which the C-terminal region interacts with F-actin and the N-terminal domain interact...

متن کامل

Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton.

Ezrin, radixin and moesin (ERM) proteins are widely distributed proteins located in the cellular cortex, in microvilli and adherens junctions. They feature an N-terminal membrane binding domain linked by an alpha-helical domain to the C-terminal actin-binding domain. In the dormant state, binding sites in the N-terminal domain are masked by interactions with the C-terminal region. The alpha-hel...

متن کامل

Dynamic association of moesin with the membrane skeleton of thrombin- activated platelets.

In the June 15, 1998 issue of Blood, Serrador et al1 report on redistribution of ezrin and moesin to the uropod of polarized T lymphoblasts, suggesting their role in establishing cell-cell contacts. The ERM (ezrin-radixin-moesin) family proteins colocalize in nonhematopoietic cells with actin filaments in surface projections, microvilli, microspikes, filopodia, ruffles, etc, where they function...

متن کامل

Ezrin/Radixin/Moesin (ERM) Proteins Bind to a Positively Charged Amino Acid Cluster in the Juxta-Membrane Cytoplasmic Domain of CD44, CD43, and ICAM-2

CD44 has been identified as a membrane-binding partner for ezrin/radixin/moesin (ERM) proteins, plasma membrane/actin filament cross-linkers. ERM proteins, however, are not necessarily colocalized with CD44 in tissues, but with CD43 and ICAM-2 in some types of cells. We found that glutathione-S-transferase fusion proteins with the cytoplasmic domain of CD43 and ICAM-2, as well as CD44, bound to...

متن کامل

Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo.

Ezrin/radixin/moesin (ERM) proteins crosslink actin filaments to plasma membranes and are involved in the organization of the cortical cytoskeleton, especially in the formation of microvilli. ERM proteins are reported to be activated as crosslinkers in a Rho-dependent manner and are stabilized when phosphorylated at their C-terminal threonine residue to create C-terminal threonine-phosphorylate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 145  شماره 

صفحات  -

تاریخ انتشار 1999